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Introduction

Harmonic homogeneous polynomials in 3 commuting variables, upon substitution of N -

dimensional representations of su(2) for the commuting variables, can be used to define

a map from functions on S
2 to N × N matrices, that sends Poisson brackets to matrix

commutators [7]. The result was dubbed “Fuzzy Sphere”, in [13]. In [12] and [5] it was

proven (conjectured in [3]) that the (complexified) Poisson algebra of functions on any

Riemann surface arises as a N → ∞ limit of gl(N,C). Insight on how matrices can

encode topological information (certain sequences having been identifiable as converging

to a particular function, but gl(N,C) lacking topological invariants) was gained in [15].

That no concrete analogue of the Fuzzy Sphere construction [7] for higher genus compact

surfaces could be found, and that the one found for the torus [6, 10] was of a very different

nature, remained an unsolved puzzle, just as the rigidity of the 2 constructions. We are

happy to announce a resolution by presenting a unified (and concrete, as well as non-rigid,

and intuitively simple) treatment for compact Riemann surfaces that are embedded in

Euclidean 3-space as level-sets of polynomial functions. In section 1 we describe Riemann

surfaces of genus g embedded in R
3 as inverse images of polynomial constraint-functions,

C(~x). In section 2 we define a Poisson bracket on R
3, to be restricted to the embedded

Riemann surface. In section 3 we review the quantization for the round 2-sphere. In

section 4 we outline our construction for general genus. In section 5 we work out the

conjectured construction for a continuous class of tori and deformed spheres. In section 6

we discuss how the classical singularity at µ = 1 is reflected in the quantum world.1

1 Further study of the algebras introduced in this paper can be found in [1].
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1 Genus g Riemann surfacesGenus g Riemann surfaces

The aim of this section is to present compact connected Riemann surfaces of any genus

embedded in R
3 by inverse images of polynomials. For this purpose we use the regular value

theorem and Morse theory. Let C be a polynomial in 3 variables and define Σ = C−1({0}).
What are the conditions on C, for Σ to be a genus g Riemann surface? If C is a submersion

on Σ, then Σ is an orientable submanifold of R
3. Σ has to be compact and of the desired

genus. For further details see [8, 9].

The classification of 2 dimensional compact (connected) manifolds is well known. In

this case, there is a one to one correspondence between topological and diffeomorphism

classes. The result is that any compact orientable surfaces is homeomorphic (hence diffeo-

morphic) to a sphere or to a surface obtained by glueing tori together (connected sum).

The number g of tori is called the genus and is related to the Euler-Poincaré characteristic

by the formula χ = 2 − 2g.

Morse theory. To compute χ(Σ) we apply Morse theory to a specific function. A point

p of a (smooth) function f on Σ is a singular point if Dfp = 0, in which case f(p) is a

singular value. At any singular point p one can consider the second derivative D2fp of f

and p is said to be non-degenerate if det(D2fp) 6= 0. Moreover one can attach an index to

each such point depending on the signature of D2f : 0 if positive, 1 if hyperbolic and 2 if

negative. A Morse function is a function such that every singular point is non-degenerated

and singular values all distinct. Then χ(Σ) is given by the formula:

χ(Σ) = n(0) − n(1) + n(2),

where n(i) is the number of singular points which have an index i.

The Cotex function is defined as the restriction of the first projection on the surface.

It’s not necessarily a Morse function (one has to choose a “good” embedding for that),

but the singular points are those for which the gradient gradC is parallel to the Ox axis.

Moreover the Hessian matrix of Cotex at such a point p is:

− 1
∂C
∂x

(p)

(
∂2C
∂y2 (p) ∂2C

∂y∂z
(p)

∂2C
∂y∂z

(p) ∂2C
∂z2 (p)

)
.

Polynomial model. Take

C(~x) =
(
P (x) + y2

)2
+ z2 − µ2,

where µ > 0, P (x) = a2kx
2k + a2k−1x

2k−1 + · · · + a1x + a0 with a2k > 0 and k > 0.

Obviously Σ is closed and bounded (even degree of P ) hence compact. Σ is a submanifold

of R
3 if, and only if for each p ∈ Σ, DCp 6= 0 which is equivalent to requiring that the

polynomials P − µ and P + µ have only simple roots. The singular points of the Cotex

function on Σ are the points (x, 0, 0) such that P (x)2 = µ2 and the Hessian matrix is:

− 1
∂C
∂x

(x, 0, 0)

(
4P (x) 0

0 2

)
.
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Hence it is positive or negative if, and only if P (x) = µ and hyperbolic if, and only if

P (x) = −µ. With the fact that P (x) can’t be zero at a singular point, it also proves that

Cotex is a genuine Morse function. Finally,

n(0) + n(2) = #{P = µ} and n(1) = #{P = −µ}.

If the polynomial P − µ has exactly 2 simple roots and the polynomial P + µ has exactly

2g simple roots, then χ(Σ) = 2 − 2g and Σ is a surface of genus g.

Explicit construction of P . Let g > 0. Set:

(i) G(t) = (t− 1)(t− 22) . . . (t− g2) and M = max
0≤t≤g2+1

G(t), α ∈
(
0, 2µ

M

)

(ii) Q(x) = αG(x) − µ and P (x) = Q(x2)

One can directly see that Q + µ has exactly g simple roots, hence P + µ has exactly 2g

simple roots. For t ∈ [0; g2 + 1], the function Q(t) − µ has no zero. On the other hand,

for t ≥ g2 + 1, Q(t) − µ is strictly growing and has exactly one zero. Consequently the

polynomial P − µ has exactly 2 simple roots and the surface Σ defined above is a genus g

compact Riemann surface.

2 Poisson brackets in R3

For arbitrary C : R
3 −→ R (twice continuously differentiable)

{f, g}
R3 := ~∇C ·

(
~∇f × ~∇g

)
(2.1)

defines a Poisson bracket for functions on R
3 (see e.g. Nowak [14] who studied the formal

deformability of (2.1)).2 Let Σg ⊂ R
3 be described, as in section 1, by a “constraint”:

1

2
C(~x) := ψ(x, y) +

z2 − 1

2

!
= 0. (2.2)

The Poisson brackets between x,y and z then read:

{x, y}R3 = z

{y, z}R3 = ψx

{z, x}R3 = ψy. (2.3)

Explicitly, substituting {x, y} for z, one obtains

ψ(x, y) +
1

2
{x, y}2

R3 = const

(
=

1

2

)
, (2.4)

resp.

ψx =
{
y, {x, y}R3

}
R3

ψy =
{
{x, y}R3 , x

}
R3. (2.5)

2While we did not (yet find a way to) use his results, we are very grateful for his “New Year’s Eve”

explanations, as well as providing us with his Ph.D. Thesis.

– 3 –



J
H
E
P
0
6
(
2
0
0
9
)
0
4
7

Let x(σ1, σ2), y(σ1, σ2), z(σ1, σ2) be a local parametrisation of Σg. Restricting {f, g}
R3 to

a Poisson bracket, {f, g}C , on the surface C(
⇀
x) = 0, and realizing {f, g}C on Σg locally as

1

ρ(σ1, σ2)

(
∂f

∂σ1

∂g

∂σ2
− ∂g

∂σ1

∂f

∂σ2

)
,

the relation (equivalence!, up to different constant values on the r.h.s. of (2.4)) between (2.4)

and (2.5) is seen as follows: differentiating (2.4) with respect to the local parameters, ϕ1

and ϕ2, one obtains a linear system of equations for ψx and ψy, whose algebraic solution (via

Cramers rule, e.g. ) gives (2.5). To go from (2.5) to (2.4) (with the constant unspecified,

of course) one either notes simply that the l.h.s. of (2.4) commutes with both x and y

(according to (2.5)), or one directly solves (2.5) via a hodograph-transformation (cp. [4],

in which Poisson bracket equations are considered, whose solutions also contain surfaces

of general type3); changing independent variables from σ1, σ2 to x1 = x(σ1, σ2) and x2 =

y(σ1, σ2); using (deriving) (as e.g. in [2])

{x, y}C =: J(x1, x2)

{f, x}C = −Jfy

{f, y}C = Jfx,

(2.5) then becomes

−JJx = ψx

−JJy = ψy,

i.e. 1
2J

2 + ψ = const.

3 “The fuzzy sphere” [7]

Consider the usual spherical harmonics,

{
Ylm(θ, ϕ)

}
l=1,...,∞

m=−l,...,+l

,

eigenfunctions of the Laplace operator on S
2 (△S2Ylm = −l(l + 1)Ylm). Write them as

harmonic homogeneous polynomials in x1 = r sin θ cosϕ, x2 = r sin θ sinϕ and x3 = r cos θ

(restricted to r2 = ~x2 = 1):

Ylm(θ, ϕ) =
∑

c
(m)
a1a2···al

xa1
xa2

· · · xal
(3.1)

(where the tensor c... is by definition traceless and totally symmetric), and then replace the

commuting variables xa by generators Xa of the N -dimensional irreducible (spin s = N−1
2 )

representation of su(2), to obtain N2 − 1 N ×N -matrices:

T
(N)
lm := γNl

∑
c
(m)
a1a2···al

Xa1
Xa2

· · ·Xal
for l = 1, . . . , N − 1 m = −l, . . . ,+l ; (3.2)

3Apart from spheres, however, these surfaces are either non-polynomial, or non-compact — or both —

causing the corresponding quantum-algebras to be necessarily different from ours.
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automatically, T
(N)
lm ≡ 0 for l ≥ N . Instead of having ~X

2
:= X2

1 +X2
2 +X2

3 equal to N2−1
4 1

(the usual normalisation), it is advantageous to choose the normalisation ~X2 = 1,

[Xa,Xb] =
2i√

N2 − 1
ǫabcXc, (3.3)

and then γNl = −i
√

N2−1
4 . As the Poisson bracket on S

2,

{f, g}S2(θ, ϕ) :=
1

sin θ

(
∂f

∂θ

∂g

∂ϕ
− ∂g

∂θ

∂f

∂ϕ

)
(3.4)

can be obtained by restricting the Poisson bracket

{f, g}R3(~x) := ~x ·
(
~∇f(~x) × ~∇g(~x)

)
(3.5)

to S
2 (via ~x 2 = 1), {Ylm, Yl′m′}S2 can be computed from

{
rlYlm, r

l′Yl′m′

}
R3

=
∑

c(m)
a1...al

c
(m′)
b1...bl′

{
xa1

xa2
· · · xal

, xb1xb2 · · · xbl′

}
(3.6)

by using the derivation property, and

{xa, xb} = ǫabcxc (3.7)

(following from (3.5)), as well as then decomposing the resulting polynomial of degree

l + l′ − 1 into harmonic homogeneous ones, to obtain the structure constants of the Lie-

Poisson algebra of functions on the 2-sphere (in the basis of the spherical harmonics).

Calculating

[
T

(N)
lm , T

(N)
l′m′

]
= −N

2 − 1

4

∑
c(m)
a1...al

c
(m′)
b1...bl′

[
Xa1

Xa2
· · ·Xal

,Xb1Xb2 · · ·Xbl′

]
(3.8)

the first step is identical to the one after (3.6), while any further use of the commutation

relations (3.3) – necessary to obtain the desired traceless totally symmetric tensors – induces

factors of 1/
√
N2 − 1; hence one finds agreement to leading order of N of the structure

constants of gl(N,C), in the basis
{
T

(N)
lm

}
l=1,...,N−1

, satisfying

Tr
(
T

(N)†
lm T

(N)
l′m′

)
= δll′δmm′

(N + l)!

16π(N − 1 − l)!(N2 − 1)l−1
,

with those of the Poisson algebra.

4 The construction for general Riemann surfaces

Let us consider compact Riemann surfaces Σg ∈ R
3 described by

(
P (x) + y2

)2
+ z2 = const (= 1) (4.1)

– 5 –
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(with P, as in section (1), an even polynomial of degree 2g), resp.

{
y, {x, y}

}
= P ′(x)(P (x) + y2)

{
{x, y}, x

}
= 2y(P (x) + y2) (4.2)

(for (2.3) with (2.5)). We claim that fuzzy analogues of Σg can be obtained via matrix

analogues of (4.1) and (4.2). Apart from possible “explicit 1/N corrections”, direct ordering

questions arise both on the r.h.s. of (4.2), and in (4.1), while on the l.h.s. of (4.2) one

replaces Poisson brackets by 1
i~

(commutator(s)). Consider therefore the problem of looking

for matrices X,Y satisfying

(
P (X) + Y 2

)2 − 1

~2
[X,Y ]2 = 1, (4.3)

resp.

1

~2

[
X, [X,Y ]

]
= 2Y 3 + Y P (X) + P (X)Y (4.4)

1

~2

[
Y, [Y,X]

]
=

2g−1∑

r=1

ar

r−1∑

i=0

Xi
(
P (X) + Y 2

)
Xr−1−i (4.5)

if P (X) =
∑2g

r=0 arX
r; the r.h.s. of (4.5) will also be denoted by P (X)′|ϕ=P (X)+Y 2 (for a

term X4 in P (X), e.g. , P ′(X)|ϕ would correspondingly include X3ϕ+X2ϕX +XϕX2 +

ϕX3). This ordering in (4.4) and (4.5) is consistent, as

(
[X,Y ]Y

)
X − [X,Y ](Y X) =

(
Y [X,Y ] +

[
[X,Y ], Y

])
X − [X,Y ]

(
XY + [Y,X]

)
(4.6)

= · · ·
=
[
Y,
[
[X,Y ],X

]]
+
[[

[X,Y ], Y
]
,X
]

(4.7)

indeed equals to zero (insert (4.4) and (4.5) for the 2 double commutators to get P (X)Y 2−
Y 2P (X) + [P ′(X)|Y 2 ,X] = · · · = 0), which is has to, due to associativity of matrix multi-

plication (and resulting Jacobi identity).

Finding (for specific values of ~
2) concrete representations of (4.4) and (4.5), resp. (4.3),

let alone classifying them, is of course a very complicated task. We succeeded in doing so

for P (x) = x2−µ (corresponding to a torus when µ > 1, and deformed spheres, when −1 <

µ < 1, see section (5), but first we would like to outline some qualitative features involved

for the general case. As mentioned in the introduction, one of the puzzles was the rigidity

of the construction for the round 2-sphere [7] and the toral rational rotation algebra [6]

(see also [11]). In the present construction we now have a (generally, i.e. apart from certain

critical values — signalling topology change) continuous dependence on the data (P ) which

describe the Riemann surface. For given P , and ~, we define the corresponding Fuzzy

Riemann Surface Σ~(P ) (for fixed P , expected to exist for infinitely many discrete values

of ~, coming arbitrarily close to zero) as the algebra generated by the corresponding finite

size (N × N) solutions (X,Y ) of (4.4), (4.5), resp. (4.3). According to the semiclassical

philosophy explained below (cp. [15])X and Y will exhibit eigenvalue sequences (generically

– 6 –
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smoothly depending on P ) characteristic of the topological type, reflecting the behaviour

of the corresponding classical embedding functions x and y.

Let us observe that we can read off information of topology from a generic single func-

tion f by using Morse theory. This Morse theoretic information of topology manifests itself

in the eigenvalue distribution of the matrix f̂ corresponding to the function f : the key idea

is to introduce an auxiliary Hamiltonian dynamical system, whose phase space is the surface

and whose Hamiltonian is given by f . Thus we consider ordinary differential equations

d

dt
σ1 = {σ1, f},

d

dt
σ2 = {σ2, f}, (4.8)

where σ1, σ2 parametrise the embedded surface. Since classical orbits of (4.8) are equal-f

lines on the surface, the family of the classical orbits exhibits branching processes which

exactly reflect Morse theoretic information. The eigenvalue distribution of f̂ is determined

(to leading order in 1
N

) by the Bohr-Sommerfeld rule. That is, the eigenvalues are values

of f on classical orbits which are such that the area between adjacent orbits is equal to

the total area of the surface divided by N . It follows that the eigenvalues are grouped

into subsets each corresponding to the branches on the surface. These subsets are called

”eigenvalue sequences” in [15], and have the property that (for sufficiently large N) the

eigenvalues belonging to a sequence rise in a smooth way. The branching processes of the

sequences are the same as those of the classical orbits. Furthermore, using the eigenvalue

sequences and (4.8), a rule to calculate general (off-diagonal) matrix elements of a matrix ĝ

corresponding to a general function g was given in [15]. Essential properties of the matrix

regularisation, such as the correspondence of the matrix commutator and the Poisson

bracket, can be derived from those rules.

5 Explicit solutions for tori and deformed spheres: Representations of

the simplest non-linear C-Algebras

Let now P (x) = x2 − µ which, for µ > 1 describes a torus, and for −1 < µ < 1 a

(deformed) sphere. We will construct solutions for the corresponding matrix equations,

which we take as

[X,Y ] = i~Z (5.1)

[Y,Z] = i~
{
X,X2 + Y 2 − µ

}
(5.2)

[Z,X] = i~
{
Y,X2 + Y 2 − µ

}
(5.3)

(
X2 + Y 2 − µ

)2
+ Z2 = 1 (5.4)

(in this section,
{
A,B

}
denotes the anti-commutator AB+BA, and not a Poisson-bracket).

Denoting X2 + Y 2 − µ by ϕ, one finds (using the Jacobi-identity, the derivation property,

– 7 –



J
H
E
P
0
6
(
2
0
0
9
)
0
4
7

and equations (5.2) + (5.3)) that
[
ϕ,Z

]
=
{
X,
[
X,Z

]}
+
{
Y,
[
Y,Z

]}

= −i~
{
X,
{
Y,ϕ

}}
+ i~

{
Y,
{
X,ϕ

}}

= i~
[
ϕ,
[
X,Y

]]
= −~

2
[
ϕ,Z

]
,

(5.5)

hence ϕ(X,Y ) and Z commute, and can be diagonalized simultaneously; it then also follows

that ϕ2 + Z2 is central, i.e. commutes with X,Y and Z.

In complex notation, W := X + iY , (5.2) and (5.3) can be written together as
(
W 2W † +W †W 2

)(
~

2 + 1
)

= 4µ~
2W + 2(1 − ~

2)WW †W, (5.6)

from which the crucial commutativity of D := WW † and D̃ := W †W ,
[
WW †,W †W

]
=
[
X2 + Y 2 − i[X,Y ],X2 + Y 2 + i[X,Y ]

]

= 2i
[
X2 + Y 2,

[
X,Y

]]
= 0,

(5.7)

also follows directly (by using (5.6)). In the basis where both D and D̃ are diagonal

D = diag(d1, . . . , dN )

D̃ = diag(d̃1, . . . , d̃N ),

(5.6) becomes

Wij

((
~

2 + 1
) (
d̃i + dj

)
+
(
~

2 − 1
) (
di + d̃j

)
− 4µ~

2

)
= 0, (5.8)

and from (WW †)W = W (W †W ) we obtain

Wij

(
di − d̃j

)
= 0 (5.9)

(which in fact was already used when writing (5.8) “symmetrically”). Thus, forWij 6= 0, (5.8)

and (5.9) are equivalent to
(
dj

d̃j

)
=

(
α −1

1 0

)(
di

d̃i

)
+

(
δ

0

)

α = 2
1 − ~

2

1 + ~2
= 2cos 2θ , δ = 4µ

~
2

1 + ~2
= 4µ sin2 θ,

(5.10)

where we have put ~ = tan θ. (5.10) is of the form

~xj = A~xi + ~c ; (5.11)

so, for

W =




0 w1 0 · · · 0

0 0 w2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 wN−1

wN 0 · · · 0 0



, wk 6= 0, (5.12)

~x(n+1) = A~x(n) + ~c, n = 1, 2, . . . , N (5.13)

– 8 –
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are the only equations relating the N eigenvalue pairs. What can we say about the possi-

bility of coming back to the same point ~x after N iterations, i.e

~x(N+1) − ~x = AN~x+
(
1 +A+A2 + · · · +AN−1

)
~c− ~x = 0. (5.14)

Multiplying by (1−A) gives

(
1−AN

)(
(1−A)~x+ ~c

)
= 0, (5.15)

and one deduces that either det
(
1−AN

)
6= 0, in which case

~x = (1−A)−1~c =
1

2 − α

(
δ

δ

)
=

(
µ

µ

)
, (5.16)

– a fix point of the transformation (i.e. A

(
µ

µ

)
+~c =

(
µ

µ

)
, making all d’s and d̃’s equal to

one another, i.e. Z ≡ 0, which we don’t want) — or 2Nθ is a multiple of 2π, i.e.

~ = tan

(
π

N
k

)
, (5.17)

in which case (5.14) holds for every ~x, as then 1 + A+ · · · + AN−1 = 0 and AN = 1 (the

eigenvalues of A are e±2iθ). Expressing the constraint (5.4) in terms of

D = WW † = X2 + Y 2 − i[X,Y ]

D̃ = W †W = X2 + Y 2 + i[X,Y ],
(5.18)

giving

(
D + D̃ − 2µ

)2
+

(
D − D̃

)2

tan2 θ
= 4 · 1, (5.19)

one sees that the transformation (5.10) must leave invariant the ellipse given via (5.19).

Although this becomes obvious in the “circle-coordinates”

Z =
D − D̃

2~
= − i

~
[X,Y ]

ϕ =
1

2

(
D + D̃

)
− µ = X2 + Y 2 − µ,

(5.20)

in which the transformation (5.13) between eigenvalue-pairs is simply a rotation by 2θ,

(
zn+1

ϕn+1

)
=

(
cos(2nθ) − sin(2nθ)

sin(2nθ) cos(2nθ)

)(
z1
ϕ1

)
, (5.21)

the picture of a by 45◦ rotated ellipse (with halfaxes 1 and ~ = tan θ) lying in the (d, d̃)-plane

is extremely useful, in particular when discussing the (µ, θ)-dependence of N -dimensional

representations of eqs (5.1)–(5.4) (s.b.).
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Figure 1. µ = 2, N = 11.

Remembering, e.g. that D = WW † we get

|Wk|2 = dk,

which is only solvable if the ellipse defined by ~x1 = (d, d̃) entirely lies in the first quadrant.

This observation leads to the following: Assume that θ = π/N for some N > 0 and let

~x = (d, d̃) lie on the ellipse (d + d̃− 2µ)2 + (d− d̃)2/~2 = 4. If µ ≤ 1 then there exists no

~x = (d, d̃) such that dn > 0 and d̃n > 0 for n = 1, 2, . . . , N . If µ > 1 and cos θ > 1/µ then,

for every choice of ~x = (d, d̃) on the ellipse, dn > 0 and d̃n > 0 for all n ≥ 1.

These solutions take the form

X =
1

2




0 x1 0 · · · 0 xN

x1 0 x2 · · · 0 0

0 x2 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 · · · xN−2 0 xN−1

xN 0 · · · 0 xN−1 0




Y = − i

2




0 y1 0 · · · 0 −yN

−y1 0 y2 · · · 0 0

0 −y2 0
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 · · · −yN−2 0 yN−1

yN 0 · · · 0 −yN−1 0




Z = diag
(
z1, z2, . . . , zN

)

xl = yl =

√

µ+
cos
(

2πl
N

+ β
)

cos
(
π/N

) = wl

zl = − sin

(
2πl

N
− π

N
+ β

)

(5.22)

and the ellipse, on which (di, d̃i) lie, will typically look like in figure 1.
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Figure 2. µ ≈ 1.055, N = 7.

In the region 1 < µ < 1/ cos θ the set of (d, d̃), for which d(n), d̃(n) > 0 for all n, is a union of

disjoint intervals whose lengths decreases and eventually become a set of N distinct points

as µ→ 1 (however, making d(i) = 0 for some i, giving not a “loop”, but a “string” solution.

This transition will be discussed in section 6). For a loop solution in this region, the points

(di, d̃i) will precisely “miss” the negative region, like in figure 2. For µ < 1, by making a

“string” Ansatz for W

W =




0 w1 0 · · · 0

0 0 w2 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 wN−1

0 0 · · · 0 0



, (5.23)

one derives, from D = WW † and D̃ = W †W , the condition d̃1 = 0 = dN , which makes

the choice d1 = 2 sin θ
(
µ sin θ +

√
1 − µ2 cos2 θ

)
necessary. Can we now, for given N , find

θ such that dN = 0? Assume that −1 < µ < 1/ cos θ and let ~x1 =
(
2 sin θ

(
µ sin θ +√

1 − µ2 cos2 θ
)
, 0
)
. If θ is a solution of

cos(Nθ)

cos θ
= −µ, (5.24)

then dn = 0 and dn, d̃n > 0 for n = 2, 3, . . . , N − 1.

There are three values of µ for which it is particularly easy to calculate these solutions

explicitly: µ = 1, µ = ~ and µ = 0.
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µ = 1.

X =
1

2




0 x1 0 · · · 0

x1 0 x2 · · · 0
...

. . .
. . .

. . .
...

0 0 xN−2 0 xN−1

0 0 0 xN−1 0



, Y = − i

2




0 y1 0 · · · 0

−y1 0 y2 · · · 0
...

. . .
. . .

. . .
...

0 0 −yN−2 0 yN−1

0 0 0 −yN−1 0




Z = diag
(
z1, z2, . . . , zN

)
, zl = sin

(
2πl

N + 1

)

xl = yl =

√√√√
1 −

cos
(

(2l+1)π
N+1

)

cos π
N+1

(5.25)

µ = ~ = tan π

2(N−1)
.

X =
1

2




0 x1 0 · · · 0

x1 0 x2 · · · 0
...

. . .
. . .

. . .
...

0 0 xN−2 0 xN−1

0 0 0 xN−1 0



, Y = − i

2




0 y1 0 · · · 0

−y1 0 y2 · · · 0
...

. . .
. . .

. . .
...

0 0 −yN−2 0 yN−1

0 0 0 −yN−1 0




Z = diag
(
z1, z2, . . . , zN

)
, zl = cos

(
(l − 1)π

N − 1

)

xl = yl =

√
2

cos π
2(N−1)

√
sin

(
πl

2(N − 1)

)
cos

(
π(l − 1)

2(N − 1)

)

(5.26)

µ = 0.

X =
1

2




0 x1 0 · · · 0

x1 0 x2 · · · 0
...

. . .
. . .

. . .
...

0 0 xN−2 0 xN−1

0 0 0 xN−1 0



, Y = − i

2




0 y1 0 · · · 0

−y1 0 y2 · · · 0
...

. . .
. . .

. . .
...

0 0 −yN−2 0 yN−1

0 0 0 −yN−1 0




Z = diag
(
z1, z2, . . . , zN

)
, zl = cos

(
lπ

N
− π

2N

)

xl = yl =

√
1

cos π
2N

sin
( lπ
N

)

(5.27)

In the region −1 < µ ≤ 1 the corresponding ellipse for a string solution will typically look

like figure 3.

Let us now derive the subcritical condition for existence of an N -dimensional

string representation,

cos(Nθ) + µ cos θ = 0, (5.28)
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Figure 3. µ = 1/2, N = 11 and θ ≈ 0.189.

valid for all µ ∈ (−1, 1/ cos θ]; with no solution for µ = −1 as (X2 + Y 2 + 1)2 + Z2 = 0

cannot have any nontrivial solutions. It is useful to remember that

µ = 1 ⇒ θ =
π

N + 1

µ = 0 ⇒ θ =
π

2N

µ = ~ ⇒ θ =
π

2(N − 1)
.

(5.29)

For µ ∈ [tan θ, 1] (other values of µ can be treated analogously):

d1 = 2µ sin θ

(
sin θ +

√
1

µ2
− cos2 θ

)
, d̃1 = 0

dN = 0 , d̃N = d1

(5.30)

gives

z1 =
cot θ

2
d1 = µ cos θ

(
sin θ +

√
1

µ2
− cos2 θ

)
= −zN

ϕ1 =
d1

2
− µ = µ

(
sin θ

√
1

µ2
− cos2 θ − cos2 θ

)
= ϕN < 0.

(5.31)

Let χ be the angle from (z1, ϕ1) to (zN , ϕN ): If we, by doing (N −1) rotations by 2θ, want

to go from (z1, ϕ1) to (zN , ϕN ), we get the condition

2θ(N − 1) = π + 2arccos z1 (5.32)

since µ ∈ [tan θ, 1]. Rearranging (5.32), and inserting the expression for z1 one obtains, by

taking cos of both sides

sin(N − 1)θ − µ cos θ sin θ = cos θ
√

1 − µ2 cos2 θ. (5.33)

Squaring the expression and solving for µ yields

µ = tan θ sin(N − 1)θ ±
√

1 − sin2(N − 1)θ

= ∓cos
(
(N − 1 ± 1)θ

)

cos θ
.

(5.34)
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ϕ

z

χ

(zN , ϕN) (z1, ϕ1)

Figure 4.

Figure 5. (x2 + y2 − 1)2 + z2 = 1

By knowing the sign of cos(Nθ) and cos θ, we see that one of the roots is a false root, leaving

µ = −cos(Nθ)

cos θ
. (5.35)

For given µ, out of the solutions for θ, it is only the smallest that gives the string solution;

the larger θ’s correspond to a total rotation of more than 2π (giving negative di’s).

6 The singularity

The equation

(x2 + y2 − µ)2 + z2 = 1 (6.1)
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defines a regular surface, except for µ = 1 (the singularity being at the origin, x = y = z =

0, see figure 5). How is this singularity reflected in the “fuzzy world”, i.e. when looking at

finite dimensional representation of (5.1), (5.4)? Interestingly, Σ~=tan θ(P = x2 − 1) “does

exist”, for θ an integer fraction of π. Equations (5.1), (5.4) do have, for θ = π/N , (up to

conjugation) a unique (“irreducible”) N − 1 dimensional solution:

X =
1

2




0 x2

x2 0
. . .

. . .
. . . xN−1

xN−1 0



, Y = − i

2




0 y2

−y2 0
. . .

. . .
. . . yN−1

−yN−1 0



,

Z =




z2 0

z3 0

0
. . .

0 zN−1




(6.2)

xl = yl =

√

1 − cos
(

2πl
N

− π
N

)

cos
(

π
N

) , zl = sin

(
2π(l − 1)

N

)
, for l = 2, 3, . . . , N.

What happens, is the following: while for large enough µ (µ > 1/ cos θ > 1), the ellipse

lies entirely in the first quadrant of the (d, d̃) plane (d, d̃ > 0), leading to an N -dimensional

representation (if Nθ = 2π) for arbitrary initial conditions (i.e. an arbitrary initial point on

the ellipse), this is no longer the case when µ approaches 1; when µ becomes smaller than

1/ cos θ, and approaches 1 from above, the continuous range of initial conditions gradually

shrinks, leaving at µ = 1 precisely one “N -dimensional” representation, which however has

the additional feature that in the limit (µ = 1) the first row and column of X, Y and Z

becomes identically zero. This drop of the dimensionality (by 1) for given θ = π/N could

be viewed as reflecting the singularity, while on the other hands it cleverly (“smoothly”)

leads over to the subcritical (µ < 1) N -dependence of θ. The only representation that

survives as µ→ 1 is the one given by

X =
1

2




0 x1 0 xN

x1 0
. . . 0

0
. . .

. . . xN−1

xN 0 xN−1 0



, Y = − i

2




0 y1 0 −yN

−y1 0
. . . 0

0
. . .

. . . yN−1

yN 0 −yN−1 0



,

Z = diag(z1, z2, . . . , zN )

xl = yl =

√

µ− cos
(

2πl
N

− π
N

)

cos
(

π
N

) , zl = sin

(
2π(l − 1)

N

)
, for l = 1, 2, . . . , N.

(6.3)

i.e. d1 = d̃1 = µ − 1 (the lower tip of the ellipse) as the starting point (due to d̃2 = d1 =

µ − 1 > 0 it is qualitatively clear, that, with that initial condition one “jumps” over the

small region of negative d̃, as well as, “at the end” the one of negative d). The drop in

dimensionality (for µ = 1) then is simply the vanishing of x1 = y1 and xN = yN . One
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could of course relabel the points (always start with the second point, instead of the lower

tip) such that µ = 1 the upper (N − 1) × (N − 1) block has a smooth limit (and the

N th row/column “disappears” as µ → 1). As noted above, the subcritical behaviour of

θ as a function of µ (to have a N -dimensional representation) is more involved. As the

allowed part of the ellipse shrinks to zero as µ goes from 1 to −1), θ has to accordingly

decrease (for fixed dimension N of the representation); for µ = 0, it is equal to π/2N . As

a reflection of the classical singularity at µ = 1, the quantum (fuzzy) analogue manifests

itself not only (by the sudden drop in dimension) at µ = 1, but also in the neighbouring

region, 1 < µ < 1/ cos θ, which we shall now discuss in detail: in this range,

d± = 2 sin θ
(
µ sin θ ±

√
1 − µ2 cos2 θ

)
; (6.4)

the d-values at which the ellipse crosses the d-axis, are both (real and) positive. The

corresponding points on the z–ϕ circle have coordinates

z± = cos θ
(
µ sin θ ±

√
1 − µ2 cos2 θ

)
> 0

ϕ± = ± sin θ
√

1 − µ2 cos2 θ − µ cos2 θ < 0. (6.5)

Let us denote the angles between the negative ϕ axis and the 2 points (given by (6.5)) by

ψ± (cp. figure 2). At µ = 1/ cos θ: ψ+ = ψ− = θ and at µ = 1: ψ
(1)
+ = 2θ, ψ

(1)
− = 0. To find

a “closed string” solution, initial conditions with angles ψ ∈ (ψ−, ψ+), are forbidden (as

well as those regions obtained by rotating the interval (ψ−, ψ+) by 2kθ (k = 1, . . . , N − 1).

To the “black” regions one has to add rotation images of the corresponding part of the

ellipse that extended into the negative d-region ψ ∈
(
ψ̃+, ψ̃−

)
= (−ψ+,−ψ−). Hence one

obtains

B :=

N−1⋃

k=0

(
−ψ+ +

2π

N
+

2π

N
k,ψ+ +

2π

N
k

)
(6.6)

as the forbidden (“black”) region. B continuously grows from empty (at µ = 1/ cos θ) to

B1 = [0, 2π) \
{

0,
2π

N
,
4π

N
, . . . , 2π

N − 1

N

}
(6.7)

(at µ = 1, where ψ+ = 2θ = 2π/N ; due to d(ψ = 0) = 0 = d̃(ψ = 0) at µ = 1 the

“closed string” solution disappears, the corresponding dimensionality drops by 1, and the

“truly N -dimensional” open-string representation then corresponds to θ = π/(N − 1)).

Note that while in the “critical region” (1 ≤ µ ≤ 1/ cos θ) both –closed and open– string

N -dimensional solutions exist, they never coexist for the same value of θ (resp.~). N -

dimensional closed-string-solutions naturally require θ = 2π/N , while N -dimension open-

string-solutions are subject to the quantisation condition

cos(Nθ) + µ · cos θ = 0 (6.8)

(the derivation is identical to the one for the subcritical region(s), µ < 1), which gives

θ = π/N for µ = 1/ cos θ, and θ = π/(N − 1) for µ = 1 (and no integer lying between N

and N − 1).
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